ChangeLog Preparatory Problems IChO 2023 V2

Problems (Theory):

- G0 General Instructions
 - Nernst equation was corrected (ln(Q) out of the fraction)
- Q5
 - Introduction: Oxidation state of RuO₂ was added explicitly in the Latimer Diagram
 - $\circ \quad 5.9 \text{ H2O} \rightarrow \text{H}_2\text{O}$
- Q7
 - 7.4 Added the hint that the deprotonation steps can be considered decoupled.
 - 7.7 <u>**Calculate</u>** how long it will take until the limiting value of 90 μ g/L is reached. \rightarrow <u>**Calculate**</u> how long it will take until the limiting value of 90 μ g/L free Pb is reached.</u>
 - Paragraph after 7.7 monitored over a period of 6 hours \rightarrow monitored by the concentration change in free Pb over a period of 6 hours
 - 7.8 Clarified the apparent half life and rate constant for the clearance of free Pd of the patients blood should be calculated.
 - 7.9 Clarified that the free Pb concentration is meant, and the complex can be ignored.
- Q19
 - \circ Introduction: retention time \rightarrow reduced/adjusted retention time
- Q24
 - \circ $\,$ Removed "Introductory Text" before introduction $\,$
- Q30
 - Intro 30.1 The construction of the A/B ring fragment → The construction of the B/C ring fragment
 - $^\circ$ 30.2 assembly of the A/B ring system in I \rightarrow assembly of the B/C ring system in I
 - 30.3 containing the C/D ring system both fragments were coupled → containing the A/D ring system both fragments were coupled:
 - Figure 35.5 Missing ester group in the product was added

Problems (Practical):

- Q6
 - Glassware and equipment: 25 ml round bottom flask \rightarrow 50 ml round bottom flask
 - Glassware and equipment: Cork ring (for 25 mL round-bottom flask) → Cork ring (for 50 mL round-bottom flask)
 - Synthesis step 2.: <u>Clamp</u> a 25 mL round-bottom flask → <u>Clamp</u> a 50 mL round-bottom flask

Solutions (Theory):

- Q6
 - $^\circ$ $\,$ 6.5 Font color was changed and missing -1) was inserted in the last line
- Q7
 - $\circ~~$ 7.4 Added justification for the approximation of decoupling the steps
 - $\circ~~$ 7.5 Added missing methyl groups on O-methyl-DMSA
- Q9

- \circ 9.7 First checkbox was unchecked, the option was wrong as described in the text below
- Q23

•

- 23.6 Structure **K** was corrected missing oxygen next to fluorenylmethyl was inserted Q25
- 25.2 Structure **A** was changed from a hemiacetal to a methyl acetal
- Q15,16 were designed better
- In general the solutions were designed a bit more consistently

ChangeLog Preparatory Problems IChO 2023 V3

Problems (Theory):

- Q2
 - $^\circ$ 2.1 Inserted a 2 before $H^{\scriptscriptstyle +}$ to be clear
- Q4
 - ° $4.6 \text{ S}^{\circ}(\text{ZnO}) = -43.6 \rightarrow \text{ S}^{\circ}(\text{ZnO}) = 43.6$
- 。 • Q5
 - Molar mass of Ru(H₂O)₃Cl₃ was corrected from 262.05 to 261.48 g/mol
 - ° Table 1 below 5.8: The last reaction equation was incorrectly balanced: $MnO_4 + 2H_3O^+ + e^- \rightarrow H_2MnO_4 + \frac{3}{2}H_2O$
 - $^\circ$ Table 2 below 5.8: The charge in the last reaction equation was incorrect MnO^-4 + $e^- \rightarrow \ MnO^{32-}{}_4$
- Q18
 - 18.2 Stated pressure and temperature of oxygen stream (298 K and 100000 Pa)
 - Paragraph above 18.5 Specification that the particles are assumed to have a spherical shape
 - ° 18.5, 18.6 Corrected unit $nm^{-3} \rightarrow nm^{3}$
- Q19
 - ° 19.2 XeO₄ → XeOF₄
- Q29
 - 29.3 Vis under the reaction arrow was removed. This would be for the reverse reaction.

Solutions (Theory):

- Refinement to make them more consistent
- Q6
 - Natural abundance was interpreted wrong. The first line was replaced with the corrected mass